"Candidatus Liberibacter caribbeanus" (Lca) Analysis of the bacterium associated with citrus huanglongbing in Colombia, S. America

Manjunath L. Keremane,

USDA-ARS, National Clonal Germplasm Repository for Citrus and Dates Riverside, CA, USA.

Chandrika Ramadugu, UC Riverside Richard Lee, USDA, ARS, Riverside Riverside Lab: Esteban Rodriguez, Ronak Patel, Hyun Park, Caitlynn Fortner Adriana Castañeda and the lab group, Amelio Arévalo, Epidemiology and phytosanitory surveillance Jorge Palacino, Amury Jimenez and the field staff ICA, Colombia

16s metagenome analysis:Mr. DNA, Inc. Dallas, TexasSanger sequencing:Genome core, UC Riverside, CAPACBIO NextGen sequencing:Genome core, UC Irvine, CADigital PCR:Instruments and technical help from Biorad, Inc.

Support from FAS, USDA-NIFA is acknowledged.

University of California, Riverside, CA gropecuario (ICA)

Collaboration with Instituto Colombiano Agropecuario (ICA)

- Collaboration started in 2010. Dr. Chandrika Ramadugu (UCR) visited ICA and helped set up a qPCR assay for detection of Citrus huanglongbing (HLB) -associated Liberibacter.
- * Dr. Jorge Angel visited USDA ARS laboratory in Riverside for hands-on training on Citrus HLB related experiments.
- * E-mail and telephone conversations with Adriana Castañeda. Testing psyllid and plant samples collected in Colombia at Riverside (2010-2014)
- * Dr. Manjunath Keremane visited ICA for ten days to demonstrate qPCR, to discuss with ICA scientists, plan strategies, train personnel and to conduct experiments (May 2014; sponsored by FAS and ICA).
- * September 2014 two scientists from ICA will visit USDA laboratory for two weeks to obtain hands-on training.
 2

Real time PCR (qPCR) of psyllid samples from Colombia. First positive psyllid samples, test date Nov 2013

2010-14: About 5000 psyllid extractions and about 80 plant DNA extracts tested

Plant DNA and psyllids shipped in alcohol to Riverside for analysis

Psyllid samples positive by real time PCR-11/2013

- 1.135403
- 2.135404
- 3. 135406
- 4. 135408
- 5. 135410
- 6. 135415

All samples were collected in Cordoba, Colombia

A large number of psyllid samples were collected multiple times, but no more positives until June, 2014

No	Source	No Psyllids	Psyllid DNA	LAS DNA	comment
313			40	15.044	positive control 1
312			40	15.711	positive control 1
311			29.718	16.770	positive control 1
310			40	18.844	positive control 1
255	135415	1	23.826	19.993	LAS infected
237	135410	1	25.602	20.250	LAS infected
236	135410	1	24.962	20.601	LAS infected
235	135410	1	25.434	21.770	LAS infected
221	135408	1	24.755	22.707	LAS infected
220	135408	5 adults	23.319	22.850	LAS infected
208	135404	5 adults	23.145	25.958	LAS infected
309			40	26.807	positive control 2
308			40	29.337	positive control 2
254	135415	1	23.452	30.362	LAS infected
307			40	31.513	positive control 2
253	135415	1	24.855	32.628	LAS infected
212	135406	5 adults	22.057	33.598	LAS suspect
207	135403	5 adults	22.888	34.001	LAS suspect
234	135410	1	24.870	34.127	LAS suspect
252	135415	1	25.538	34.288	LAS suspect
233	135410	1	24.365		LAS suspect
232	135410	5 adults	23.089	34.981	LAS suspect
306			40	35.030	positive control 2
251	135415	6 adults	22.990		LAS suspect
231	135410	1	24.389	35.512	LAS suspect
250	135415	1	24.104		LAS suspect
249	135415	1	23.848		LAS suspect
230	135410	1	24.888		LAS suspect
206	135403	1	25.968		LAS suspect
229	135410	1	25.210		LAS suspect
205	135403	1	24.505	36.982	LAS suspect
219	135408	1	25.798		negative
218	135408	1	24.739		negative
228	135410	1	24.989		negative
248	135415	1	24.880		negative
247	135415	1	23.979		negative
217	135408	1	25.374		negative
246	135415	1	24.297		negative
227	135410	1	25.635		negative
216	135408	1	24.893		negative
226	135410	1	24.302		negative
1	135140	4 adults 4 nymphs	21.520		negative
2	135140	1 adults	23.967		negative 3

First detection of '*Candidatus* Liberibacter' from Colombia Tested: Nov 2013; Collected Aug 2013?

The first batch of Liberibacter-positive psyllid samples came from Cordoba, Colombia from backyard citrus. This area has no commercial citrus

Second detection of '*Candidatus* Liberibacter' from Colombia Tested: June 2014; collected 2013

- 1. First positive find site: Cordoba (test date Nov 2013)
- 2. Second positive find site: Barranquilla (test date June 2014)

Real time PCR (qPCR) of psyllid samples from Colombia Positive psyllid samples, Test date June 2014

No	PCR	QMAG	Well	Row	Col	Sample	LAS	DC	Samples	RESULT
3183	44	475	77	G	5	139179	19.932	23.543	Psyllids	POSITIVE
2183	31	466	4	А	4	1402725	20.387	22.844	Psyllids	POSITIVE
2311	33	469	76	G	4	1402725	20.988	24.488	Psyllids	POSITIVE
3178	44	475	17	В	5	139177	28.726	24.819	Psyllids	POSITIVE
3180	44	475	41	D	5	139178	29.002	24.471	Psyllids	POSITIVE
3151	44	475	73	G	1	1405409	30.099	23.132	Psyllids	POSITIVE
3168	44	475	87	Н	3	138202	31.845	23.729	Psyllids	POSITIVE
2549	37	463	58	E	10	1402570	31.962	29.081	Psyllids	POSITIVE
2589	38	464	51	E	3	1402724	32.964	25.945	Psyllids	suspect
2928	41	471	93	Н	9	1402849	33.702	27.430	Psyllids	suspect
2647	38	464	82	G	10	1402723	34.058	26.365	Psyllids	suspect
1998	29	461	88	Н	4	137325	34.160	26.216	Psyllids	suspect
2046	29	461	94	Н	10	138040	34.726	28.008	Psyllids	suspect
1846	27	459	93	Н	9	139066	34.743	26.453	Psyllids	suspect
2014	29	461	90	Н	6	137329	34.783	25.074	Psyllids	suspect
2696	39	465	88	Н		1402561	34.866	25.842	Psyllids	suspect
2030	29	461	92	Н	OLES	138039	34.960	27.979	Psyllids	suspect
2038	29	461	93	Н	9	138042	35.107	25.415	Psyllids	suspect
3150	44	475	61	F	1	1405363	35.133	23.165	Psyllids	suspect
1814	27	459	89	Н	5	139074	35.204	27.720	Psyllids	suspect
2006	29	461	89	Н	5	137330	35.241	25.351	Psyllids	suspect
2312	33	469	88	Н	4	1402725	35.302	24.237	Psyllids	suspect
2648	38	464	94	Н	10	1402723	35.366	24.989	Psyllids	suspect
2111	30	467	7	А	7	1405074	35.378	21.965	Psyllids	suspect
3181	44	475	53	E	5	137176	35.440	23.719	Psyllids	suspect
1798	27	459	87	Н	3	139072	35.564	25.292	Psyllids	suspect
1822	27	459	90	Н	6	139071	35.645	25.652	Psyllids	suspect
2022	29	461	91	Н	7	138039	35.729	27.638	Psyllids	suspect
2053	29	461	83	G	11	138038	35.730	27.077	Psyllids	suspect
2288	33	469	85	Н	1	1405377	35.759	24.021	Psyllids	suspect
1790	27	459	86	Н	2	139066	35.777	28.955	Psyllids	suspect
3204	44	475	44	D	8	139017	35.904	25.328	Psyllids	suspect
1950	28	460	94	Н	10	137334	35.925		Psyllids	suspect

Ca. L. asiaticus'-positive psyllid extracts from Florida showed a positive band (indicated by an arrow).

Ca. L. caribbeanus'-positive psyllid extracts from Colombia did not show a positive reaction. Agdia kit <u>does not work</u> for *Ca.* L. caribbeanus'. 7

Conventional PCR, Cloning, Sequencing of 16S rDNA fragment of '*Ca*. L. caribbeanus'

1. Conventional PCR was done with primers OI1, OI2C to amplify 16S rDNA fragment.

2. Cloned in pCR4 Topo vector and sequenced (Sanger method, done at Univ. of California, Riverside, CA).

16S rDNA analysis

Neighbor joining tree showing the relationship of different Liberibacters (based on 16S rDNA sequence); 10,000 replications. Bar represents substitutions per nucleotide. 9

Distance matrix

Estimates of evolutionary divergence based on 16S rDNA sequences										es		
Taxon	Ca. L. caribbeanus	Ca. L. asiaticus	Ca. L. americanus	Ca. L. africanus	<i>Ca</i> . L. solanacearum	<i>Ca</i> . L. psyllaurous	<i>Ca</i> . L. europaeus	L. crescens	Agrobacterium	Bradyrhizobium	Wolbachia	Brucella
Ca. L. asiaticus	0.035											
Ca. L. americanus	0.043	0.038										
Ca. L. africanus	0.035	0.014	0.034	0	LE							
Ca. L. solanacearum	0.048	0.032	0.044	0.031								
<i>Ca</i> . L. psyllaurous	0.048	0.029	0.044	0.031	0.004							
Ca. L. europaeus	0.045	0.036	0.034	0.033	0.051	0.050						
Liberibacter crescens	0.057	0.055	0.060	0.051	0.055	0.055	0.055					
Agrobacterium	0.093	0.105	0.107	0.102	0.103	0.103	0.106	0.076				
Bradyrhizobium	0.103	0.115	0.120	0.110	0.111	0.109	0.116	0.083	0.049			
Wolbachia	0.120	0.131	0.140	0.128	0.133	0.133	0.136	0.106	0.062	0.089		
Brucella	0.111	0.123	0.126	0.120	0.124	0.122	0.120	0.103	0.043	0.058	0.072	
Escherichia coli	0.190	0.192	0.204	0.195	0.202	0.199	0.188	0.192	0.182	0.180	0.196	0.173

The number of base substitutions per site between sequences are shown. Analyses conducted using the Maximum Composite Likelihood model, conducted in MEGA6. 10,000 iterations.

Ca. L. caribbeanus has 92-96% identity with other Liberibacters (based on 16S rDNA sequences)

	Percent identity of				
Related bacteria	Ca. L. caribbeanus				
Ca. L. asiaticus	95				
Ca. L. americanus	96				
Ca. L. africanus	95				
Ca. L. africanus subsp. capensis	92				
Ca. L. psyllaurous	94				
Ca. L. solanacearum	94				
Ca. L. europaeus	95				
L. crescens	95				
Sinorhizobium	92				

16S meta genome analysis

- The psyllid DNA extracts were analyzed for 16S rDNA sequence by meta-genome analysis (Mr. DNA).
- 2. We were able to identify Liberibacter like sequences from psyllids from Colombia. These sequences showed about 94% identity with Las
- 3. Psyllid titer seemed to parallel those found in tomato psyllids (preliminary)

Digital droplet PCR: LAS, LCA and LAS-California strain.

Similar to real time PCR Each reaction is fractionated into 20,000 fractions Positive and negative droplets in each well are read

Sensitive, absolute detection of the target. Can differentiate populations of Liberibacters. Our results indicate a population different from Las. With ddPCR, can detect even minute quantities of the bacterium.

House keeping gene used for plant samples is malate dehydrogenase (single copy gene). EARLY DETECTION.

Droplet digital PCR to detect low titers of HLB bacteria

Digital PCR detected Las bacteria in greenhouse trees inoculated as early as 17 days ago

Digital PCR partitions 1 reaction (20 ul solution) used in real time PCR into 20,000 droplets. The reactions are conducted and read separately in 20,000 droplets. Accurate and absolute quantification of bacteria.

- Ten plants from Hacienda Heights isolate of Las were analyzed
- Two negatives a Mexican lime seedling and a tangerine seedling exposed to healthy psyllids had no bacteria (as expected; 1 and 2)
- One Mex. lime exposed to psyllids with Las for 9 days tested negative (4)
- Other six plants were positive for Las (3, 6,7,8,9,10)
- Plant exposed to Las for 17 days was Las positive by digital PCR (6)

Confirmatory tests for Las detection in Droplet digital PCR

- An Las positive sample was analyzed by ddPCR for 16s gene (3 copies per genome) was analyzed.
- A set of 12 genes were analyzed; four are shown here.
- Out of four genes analyzed, three are single copy genes in Las genome (Florida isolate). The fourth gene is present in 2 copies per genome.

Digital PCR clearly discriminated the Colombian Liberibacter from Las

Digital PCR helped detect Liberibacter positive plant DNAs from Colombia

A plant DNA that was negative by Las primer was analyzed using a newly designed primer which amplified the product better in digital PCR.

Positive droplets can be visualized as dots (bottom) or as a histogram

Digital PCR helped detect Liberibacter positive plant DNAs from Colombia

Two plant samples tested positive for Lca by digital PCR, modified real time PCR, cloning and sequencing came from Cordoba region, one from *Murraya* and another from sweet orange (*Citrus*) tree.

RecordNo	CA	source	source2	category	Sample	mo	dt	yr
10787	F9703	139111	DNA	Colombia Plant	DNA	1	13	2014
10788	F9704	139112	DNA	Colombia Plant	DNA	1	13	2014
10789	F9705	139113	DNA	Colombia Plant	DNA	1	13	2014
10790	F9706	139114	DNA	Colombia Plant	DNA	1	13	2014
10791	F9707	139115	DNA	Colombia Plant	DNA	1	13	2014
10792	F9708	139116	DNA	Colombia Plant	DNA	1	13	2014
10793	F9709	139117	DNA	Colombia Plant	DNA	1	13	2014
10794	F9710	139191-1	DNA	Colombia Plant	DNA	1	13	2014
10795	F9711	139191-2	DNA	Colombia Plant	DNA	1	13	2014
10796	F9712	139192-1	DNA	Colombia Plant	DNA	1	13	2014
10797	F9713	139192-2	DNA	Colombia Plant	DNA	1	13	2014
10798	F9714	139193-1	DNA	Colombia Plant	DNA	1	13	2014
10799	F9715	139193-2	DNA	Colombia Plant	DNA	1	13	2014
10800	F9716	13898	DNA	Colombia Plant	DNA	12	10	2013
10801	F9717	13899	DNA	Colombia Plant	DNA	12	10	2013
10802	F9718	13900	DNA	Colombia Plant	DNA	12	10	2013
10803	F9719	13901	DNA	Colombia Plant	DNA	12	10	2013
10804	F9720	13902	DNA	Colombia Plant	DNA	12	10	2013
10805	F9721	13903	DNA	Colombia Plant	DNA	12	10	2013
10806	F9722	13904	DNA	Colombia Plant	DNA	12	10	2013
10807	F9723	13905	DNA	Colombia Plant	DNA	12	10	2013

Digital PCR detection of Lca in psyllids from Colombia

Detection of Lca in psyllids from Colombia by digital PCR using 16s rDNA primers modified for Lca specificity

LAS 384 array

- ^{1.} Designed 384 primer pairs to Las genomic regions.
- ^{2.} qPCR with SYBR green for Las sample and for Lps sample.
- 3. Panel A shows amplification in 95/96 wells.
- 4. Panel B shows amplification in only some wells (green circles).
- 5. If the Liberibacter is different from Las, you get a pattern similar to panel B.

Psyllid extract with '*Ca*. L. asiaticus' shows amplification in most wells.

Psyllid extract with '*Ca*. L. psyllaurous' shows amplification in only some wells. 20

Analysis of other genomic regions of Liberibacters in psyllids from Florida and Colombia

Psyllid extracts positive for '*Ca*. L. asiaticus' showed positive signal with primers 5, 6, 7, 8, 9,10 and 11. Negative signal for 1, 2, 3, 4.

Psyllid extracts positive for '*Ca*. L. caribbeanus' showed positive signal with primers 1, 2, 3, 4, 10 and 11. Negative signal for 5, 6, 9.

Next Gen sequencing using PAC-BIO platform

- Psyllid DNA extract (positive for Lca) is used for amplifying the whole genome of the bacterium.
- 2. Amplified product assayed by qPCR to get an estimate of amplification.
- ^{3.} Used for Next Gen Sequencing reactions of the psyllid metagenome using PAC-BIO (Pacific Biosciences) platform. Conducted at University of California Irvine.
- ^{4.} Using SMRT (<u>single molecule real time</u>) sequencing technologies, sequences of up to 20 Kb length (Average length 1.5 kb) are generated.
- 5. We have generated about 250 Kb sequence of '*Ca*. L. caribbeanus', and more bioinformatic analysis is in progress.
- 7. We are working on completing the genome sequence.

Next Gen sequencing using PAC-BIO platform

- * 15 SMRT cells were used to obtain large amount of sequence
- * Each SMRT cell yielded about 400,000 sequences
- * Average length of sequecnes was 1500
- * 400,000 X15 X 1500 = 9 billion bases
- * Bioinformatic analysis has yielded large number of Liberibacter contigs

Full assembly of Lca genome is in progress

Conventional PCR and sequencing of other genomic regions

1. Conventional PCRs conducted for 4 genomic regions of 'Ca. L. caribbeanus'.

2. Primer sequence was based on PAC-BIO metagenome analysis.

3. Psyllid extracts positive for '*Ca*. L. caribbeanus' used for PCR amplification, gel fragments cloned and sequenced (Sanger sequencing at UCR core facility).

4. Sequences are about 85-95% similar to known Liberibacters.

Conclusions

- 1. The results presented here have resulted from excellent cooperative effort of multiple agencies.
- 2. A four-year cooperative effort has resulted in identification and characterization of a new species of Liberibacter. We propose the name, '*Candidatus* Liberibacter caribbeanus'.
- 3. Positive psyllids were found first in November 2013 from Cordoba in the Northeastern part of Colombia close to Caribbean sea.
- 4. Analysis of about 4000 psyllid extractions resulted in detection of Lca in four more samples (10 extractions). About 30 other extractions were considered suspects.
- 5. Using digital PCR, we were able to discriminate between Las and Lca and identify Lca in two plant samples (further supported by PCR and sequencing).
- 6. PACBIO NextGen sequencing was used for sequencing the full genome of *Candidatus* Liberibacter caribbeanus'.